ASIGNATURA DE GRADO:

GESTIÓN Y CONSERVACIÓN DE AGUAS Y SUELOS

Curso 2016/2017

(Código: 61903029)

1.PRESENTACIÓN DE LA ASIGNATURA

La asignatura GESTIÓN Y CONSERVACIÓN DE AGUAS Y SUELOS corresponde al Grado de Ciencias Ambientales , es de carácter obligatorio, 5 ETCs, y se imparte en el primer semestre del tercer año de grado

Recoge la necesidad de conectar con la problemática de la "escasez" de agua y suelo. Respecto al agua es obligado dedicar un especial cuidado tanto en recoger, canalizar y almacenar el agua de lluvia, como en tratar, depurar, desinfectar y reutilizar el agua de vertidos urbanos, agricolas,e industriales. En numerosos puntos de la geografía la escasez del agua frente a su amplio consumo, ha impulsado a la desalinización del agua de mar (en las costas el asentamiento urbano es muy amplio), con el correspondiente consumo energético y el impacto ambiental por las corrientes de salmuera. De ello, de la tecnología puesta en juego, y de la disquisición socio-política entre trasvases -desalinizadoras, se trata en la disciplina.

El tratamiento de aguas está en función de aquellos materiales que se deben separar, pero también de las propiedades del agua, lo que exige un conocimiento de sus características ácido-base, oxidante-reductor, disolvente, reactivo de hidrólisis, capacidad de fotólisis, etc. Y el estudio de estos temas acapara una parte de la disciplina.

La calidad que se exige al agua está en función de su uso, como alimento, para limpieza, riego agrícola o riego de jardinería, uso en calderas de vapor, en industria electrónica. Por tanto, hay una serie de tratamientos, del agua bruta o del agua residual urbana, para alcanzar los estándares de calidad marcados por las leyes de aguas. Los diferentes tratamientos, primario, secundario, terciarío de los ETAP y EDAR y de las líneas de fangos de los últimos, son objetivo primordial de la disciplina, junto a sus implicaciones técnicas, el diseño de algunos de los sistemas utilizados y los requerimientos energéticos y de materiales.

Tema muy diferente es el suelo, en primer lugar su origen y formación y la tan temida desertificación ocupan el primer contacto de estudio. La naturaleza del suelo y sus propiedades físico-químicas son claves para comprender la interacción del suelo con el agua, retención o lixiviación; la interacción coloides del suelo con los productos disueltos en el agua y a partir del conocimiento de dicha interacción , la capacidad del suelo para retener o expulsar compuestos ajenos al mismo, aumentar o perder sus propiedades como suelo agrícola, y resultar o no contaminado. El estudio de las características y propiedades del suelo y de su interacción con el medio es una contribución de la disciplina.

Por último la presentación de los procesos empleados para mejorar las características del suelo, para aislar el suelo contaminado y sobre todo las técnicas para provocar la descontaminación, pormenorizando procesos, materiales energía y subproductos ocupan la parte final de la asignatura.

2.CONTEXTUALIZACIÓN EN EL PLAN DE ESTUDIOS

GESTIÓN Y CONSERVACIÓN DE AGUAS Y SUELOS (5 creditos ECTS) pertenece al conjunto de asignaturas que comprende la materia "Conservación planificación y gestión del medio natural, rural y urbano", es de carácter obligatorio. Se imparte en el primer semestre del tercer año del Grado . Junto con la asignatura "Gestión y conservación de la flora y la fauna", que se imparte en el segundo semestre, introduce al estudiante en el cometido de gestión .

Ahora bien la formación que debe dar al egresado está focalizada a aspectos variados, se ha mencionado la gestión de dos

bienes universales agua y suelo, bienes por otra parte locales y muy diferentes de unos a otros lugares. Se trata de la protección de ambos de agentes agresores externos y de su recuperación cuando han perdido sus propiedades.

Por tanto debe aportar una carga elevada de tecnología y de diseño de procesos, una breve recopilación de la reactividad tanto del medio acuoso como del medio edáfico, una visión economicista en la toma de decisiones y la consideración de aspectos sociales en la toma de medidas.

Competencias genéricas

Capacidad de aprendizaje autónomo

Capacidad de planificación y organización.

Capacidad de análisis y síntesis

Capacidad de crítica, y de aceptar o rechazar propuestas

Capacidad comparativa entre varias opciones de diferente implicación social

Competencia en la búsqueda de información

Competencia en la expresión escrita y redacción de documentos

Competencias específicas

Competencia en la estimación de recursos naturales de agua y de suelo. Así como de la calidad de ambos o de su degradación en un entorno fijado.

Competencia en estimar los tratamientos que debe integrar un ETAP para llevar un caudal a la calidad del consumo.

Competencia en fijar el diseño de un EDAR, en especial en la elección del reactor biológico más adecuado para tratar una corriente residual dada.

Competencia en la estimación del requerimiento energético de una línea de fangos.

Competencia en la detección de las causas de la contaminación de un suelo o de su degradación.

Competencia en la elección del tratramiento de mejora de un suelo o de descontaminación del mismo.

3.REQUISITOS PREVIOS REQUERIDOS PARA CURSAR LA ASIGNATURA

básicas de de otras materias del grado, las de tipo cientifico: fisica, química, biología, geología, de tipo social, de conocimiento del medio físico, de ecología, e incluso una introducción a la legislación ambiental; todo ello junto con la introducción a la ingeniería ambiental, constituye el bagaje necesario para su estudio.

4.RESULTADOS DE APRENDIZAJE

Los resultados del aprendizaje de esta asignatura se pueden esquematizar en algunos puntos:

Estimar las necesidades de tratamiento de una corriente de agua natural , fluvial, de pantano, de acuífero, para su uso sea agrícola, urbano, o industrial.

Estimar los párametros de diseño del reactor biológico de una corriente a depurar en función del tipo de reactor y del tipo de microorganismo, relación volumen/caudal, pH en distintas zonas, método y caudal de aireación. Plantear los tratamientos en la linea de fangos y las exigencias térmicas.

Evaluar, en el caso de necesidad de aumentar el agua disponible en una región, la posibilidad de un trasvase o de una planta desalinizadora, teniendo en cuenta los aspectos ambientales, socio-políticos, económicos y tecnicos.

Valorar las propiedades de un suelo a partir de datos de constitución y de análisis del mismo.

Proponer mejoras en la calidad de un suelo, correcciones a la acidez y a la salinización.

Proponer un método realista para la descomtaminación de suelos contaminados teniendo en cuenta las implicaciones tecnológicas, y económicas.

5.CONTENIDOS DE LA ASIGNATURA

Los contenidos de la asignatura se recogen en seis temas

TEMA I PROPIEDADES DEL AGUA.

1.1-Tipos de aguas por su composición y origen

Atmosférica, superficial, subterránea.

Compuestos inorgánicos en el agua superficial.

1.2-Propiedades del agua

Propiedades ácido-base.

Dureza del agua. Eliminación.

Propiedades Red-Ox. Oxidación reducción del agua y de compuestos disueltos.

Reacciones de complejación, fotoquímicas y de hidrólisis.

Biodegradaciones.

Presencia de cationes de aluminio, hierro y manganeso.

1-3-Medio marino

Propiedades del medio marino.

Compuestos presentes.

nbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante

TEMA II TRATAMIENTO DE LAS CORRIENTES DE AGUA

- 2-1 Calidad de las aguas.
- 2-2 Tratamiento de aguas para consumo urbano.
- 2-3 Depuración de aguas residuales de origen urbano.

Tratamiento primario.

Tratamiento secundario.

Instalaciones para el tratamiento biológico aerobio y anaerobio.

Consideraciones de diseño del reactor biológico de fango activado.

Eliminación de compuestos de nitrógeno y fosforo.

Consideraciones de diseño del reactor biológico anaerobio

2-4.Tratamiento de Iodos

Operaciones sobre el fango.

Tratamientos térmicos e incineración.

Diseño de horno de secado.

Compostaje, diseño de pilas, tuneles y reactores.

2-5. Tratamientos terciarios

Eliminación de compuestos no biodegradables.

Deionización.

Desinfección.

2-6-Tratamiento de aguas residuales industriales

Procesos específicos.

TEMA III GESTIÓN DE AGUAS

- 3-1 Ciclo hidrológico.
- 3-2 Gestión en una cuenca .

Características en España de los recursos y del consumo.

3-3 Captación del agua de Iluvia y abastecimiento.

Ámbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante el "Código Seguro de Verificación (CSV)" en la dirección https://sede.uned.es/valida/

3-4 Características de las precipitaciones. Intensidad Hidrogramas Almacenamiento y transmisión de flujo. Embalses Acuiferos. Pozos 3-5 Tratamiento y reutilización de aguas de procedencia industrial o urbana. 3-6 Desalación de agua de mar. Técnicas. 3-7 Proceso de ósmosis inversa. 3-8 Trasvases frente a desalación. TEMA IV SUELOS: ORIGEN. EROSIÓN. CONSTITUYENTES

4-2 Formación del suelo.

4-1 Suelo-Horizontes.

4-3 Erosión y degradación del suelo.

4-4 Fases del suelo. Constituyentes.

Minerales, materia orgánica, agua edáfica, aire edáfico.

4-5 Propiedades físicas del suelo .

Granulometría, textura, porosidad.

4-6 Interacción fase mineral –fase acuosa.

Coloides en el suelo.

Adsorción. Isotermas. Reparto entre fases.

Intercambio iónico.

TEMA V CONTAMINACIÓN DEL SUELO, ORIGEN E INCIDENCIA

5-1 Contaminantes inorgánicos: metales.

5-2 Contaminantes orgánicos: pesticidas, vertidos urbanos e industriales.

5-3 Características de acidez-alcalinidad.

Sucesos que afectan a la acidez- alcalinidad del suelo. Consecuencias

Tratamiento a suelos ácidos.

5-4 Degradación del suelo por acumulación de sales.

lbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante

Acción sobre los suelos salinos.

TEMA VI REMEDIACIÓN DE SUELOS TRATAMIENTO A SUELOS CONTAMINADOS

- 6-1 Medidas de contención.
- 6.-2 Tecnicas de confinamiento- estabilización.

Aislamiento. Sellado. Solidificación. Vitrificación.

- 6-3 Procesos térmicos.
- 6-3 Tratamientos químicos.

Oxidación.

6-4 Tratamiento de suelos por extracción.

Aireación.

Arrastre mediante una corriente de aire.

Arrastre mediante una corriente de vapor.

Lavado. Acción de reactivos.

Separación de los productos extraídos. Destilación.

6-5 Tratamiento de suelos por electroremediación

Fundamentos. Consideraciones de diseño.

6-6 Tratamientos biológicos de recuperación de suelos.

Recuparación de suelos contaminados por hidrocarburos.

Procesos en situ, y ex situ. Reactores biologicos. Diseño

Acción de los microorganismos sobre metales. Movilizar e inmovilizar.

Técnicas de tratamiento biológico.

Fitorecuperación.

- VICENTA MUÑOZ ANDRES
- **ESTHER ASEDEGBEGA NIETO**
- MARIA PEREZ CADENAS

7.METODOLOGÍA Y ACTIVIDADES DE APRENDIZAJE

La impartición de la asignatura se basa:

En la adquisición de un bagaje de conocimientos amplio. Esta información la encuentra en el texto base y en aportaciones en el curso virtual, por parte del equipo docente y de los profesores tutores.

En una búsqueda personal de información puntual: Los datos tecnicos de una depuradora en uso, el procedimento que se ha empleado en el tratamiento de una contaminación real de suelo, etc.

Se acepta que el tiempo dedicado a asimilar información y el tiempo dedicado a aplicarla en ejercicios prácticos sea de un número semejante de horas

El estudiante puede seguir su aprendizaje mediante una autoevaluación utilizando los cuestionarios, que por cada tema encuentra en el curso virtual.

En la realización de la actividad obligatoria, necesita unas 40 horas de trabajo individual no presencial. Comprende tres actividades, una dedicada a propuestas en el tratamiento de aguas diversas. La segunda a una clasificación y caracterización de un suelo a partir de datos análiticos y texturales, y a la propuesta de mejora o descontaminación de un suelo con atención especial a los aspectos tecnicos e ingenieriles. Por ultimo se presentará, basada en la bibliografía, una actuación real, bien en una medida de descontaminación bien en una medida para evitar los daños causados en una situación hidrólogica extrema con posibilidades de repetirse.

El seguimiento del aprendizaje se realiza por parte del equipo docente y el estudiante encuentra apoyo en el profesor tutor.

8.EVALUACIÓN

La evaluación sigue las pautas de la metodología de EEES.

Por tanto tiene una componente de seguimiento continuo en la consecución de objetivos parciales por parte del estudiante, para ello dispone de una serie de pruebas de autoevaluación para cada tema en el curso virtual.

La estimación general tanto de los resultados individuales como del colectivo se basa en tres puntos:

Una evaluación mediado el curso, realizada sobre 4 de los 6 temas del mismo, utilizando una prueba objetiva, que se ofrecerá al estudiante durante un periodo de tiempo determinado.

Un trabajo obligatorio extenso, en el que se valora la asimilación de conocimientos y la presentación de soluciones así como la expresión grafica y escrita.

Una prueba presencial que consta de tres temas y un ejercicio numérico y que tiene como objetivo evaluar el nivel de conocimientos, la capacidad de sintesis, de expresión y de estimación de soluciones. Esta prueba, con una duración de dos horas, se realizará sin material auxiliar, a excepción de una calculadora no programable.

La nota de evaluación es la suma de la nota obtenida en el trabajo obligatorio, (hasta 2 puntos), y la nota obtenida en la evaluación de los conocimientos, (hasta 8 puntos). Esta última es la suma de la nota obtenida en la prueba presencial (hasta 8 puntos) más el resultado de la prueba objetiva (hasta un punto de mejora).

9.BIBLIOGRAFÍA BÁSICA

Comentarios y anexos:

Los profesores Vicenta Muñoz, Jesús Álvarez y Esther Asedegbega han elaborado una versión actualizada de la Unidad Didáctica, "GESTION Y CONSERVACION DE AGUAS Y SUELOS"

Se aconseja al estudiante que posea un texto de la anterior edición que consulte en la biblioteca del Centro Asociado las variaciones de la nueva edición.

Es cierto que el estudiante universitario estudia por diversas fuentes y por ello se introduce la bibliografia complementaria.

Asimismo, en el curso virtual se encuentra material auxiliar complementario, ejercicios resueltos, web conferencias,

10.BIBLIOGRAFÍA COMPLEMENTARIA

Comentarios y anexos:

En el manual básico se recoge una amplia bibliográfia tanto sobre temas generales como específicos.

En este apartado tan sólo se refieren cuatro obras, muy diferentes en sus materias, que proporcionan una amplia información sobre los temas que detallan sus títulos, mas allá de los breves contenidos de la asignatura.

En primer lugar el TRATAMIENTO DE AGUAS RESIDUALES, VERTTIDO Y REUTILIZACIÓN (Metcalf y Eddy) Mc Graw-Hill /Interamericana, presenta una amplia información de los tratamientos y del diseño de los aparatos industriales donde se realiza, es una obra de consulta y de acopio de datos y tecnología

La obra de Balairón Pérez , L. GESTIÓN DE RECURSOS HÍDRICOS, editada por la Universitat Politécnica de Catalunya, recoge los muy diversos aspectos que se pueden considerar de la gestión de aguas. Está muy buen estructurada y es seguro que resistirá el paso del tiempo.

En cuanto a la obra QUÍMICA AMBIENTAL DE LOS SITEMAS TERRESTRES, de Domènech y Péral, editada por Reverté, está realizada por autores de una amplia experiencia en la docencia e investigación en el tema, su principal merito está en presentar la interacción de las sustancias disueltas en el medio con los colides del suelo.

Respecto a un estudio de la constitución del suelo, su degradación y su descontaminación, es de interes, por la sencillez de la descripción SOIL PULLUTION ORIGIN, MONITORING & REMEDIATION de Ibrahin A. Mirsal. SPRINGER 2004

11.RECURSOS DE APOYO

A través del curso virtual el estudiante recibe información complementaria puntual bien por parte del equipo docente y de su profesor tutor, en especial grabaciones de web conferencias.

En el curso virtual el equipo docente introduce escritos sobre parte de un tema, ejercicios resueltos y webconferencias sobre temas teoricos y ejercicos prácticos.

También se le comunica enlaces a páginas Web de interés, como directivas de la Unión Europea, decretos-ley específicos, página del Ministerio de Agricultura, Alimentación y Medio Ambiente, empresas cuya actividad está implicada en los recursos de agua y suelo, etc.

Las tutorias se realizan por el procedimiento de webconferencia y en el curso virtual aparecen el link a las mismas

12.TUTORIZACIÓN

En el Grado de Ciencias Ambientales las asignaturas de tercer curso tienen una red de tutores, de tal modo que todos los estudiantes tienen asignado un tutor y un grupo de tutoría.

Las tutorias se realizan por dos medios.

El uso de la Web conferencia, abierta a todos los estudiantes, no solo a un grupo de tutoria, que queda grabada para su consulta posterior.

Cada grupo de tutoría tiene asignado un foro en el curso virtual, en él el tutor atiende las preguntas, peticiones o dudas de los estudiantes de su grupo. Si lo considera oportuno puede introducir información complementaria sobre publicaciones, videos, etc.

Ello no es óbice para que el equipo de la Sede Central atienda aquellas solicitudes, consultas, peticiones que reciba a través del curso virtual. El equipo docente tiene un horario de atención, por telefono o personalmente, los martes de 15:00 a 19:00.

La prueba objetiva de la evaluación continua, es común a todos los estudiantes se corrige por el equipo docente y su resultado queda insertado en el curso virtual

El trabajo obligatorio lo introduce el equipo de la Sede Central, por tanto responde a dudas o peticiones realizados en el foro correspondiente, y evalua los trabajos insertados en el curso virtual.

13. Practicas no presenciales.

Como ya se ha indicado en esta asignatura es obligatorio la realización de un trabajo extenso individualizado, ahora bien no es de tipo presencial, no se realiza en el laboratorio, sino que, en algunos temas, utiliza los datos de laboratorio que se le suministran y los elabora y propone actuaciones de acuerdo a estos datos.

Estos trabajos se ofrecen pormenorizados en el curso virtual, en el icono del mismo nombre y allí se detallan los objetivos, datos, y fechas de entrega. El equipo docente atenderá las consultas sobre el mismo realizadas en el foro "trabajo obligatorio". El escrito final se envía, a través del curso virtual al equipo docente. Se ruega encarecidamente que no se utilice el correo de los profesores para su envío.

Se señala que tiene la misma obligatoriedad que si fuera un trabajo presencial. El trabajo aprobado tiene validez para el curso en el que se realiza y en el siguiente.

El equipo docente agradece la atención que los profesores tutores en variadas ocasiones prestan al alumno en la resolución de dudas.

Se quiere destacar que es un trabajo individual, por tanto se penalizaran aquellos trabajos que fueran un duplicado o una copia literal de bibliografía.

Se solicita recabar información en varios de sus apartados y por ello se insiste, ya desde aquí, en la necesidad de indicar el origen de la información: autor, texto, editorial, página web, empresa, etc. Ello forma parte del aprendizaje en la obtención y utilización de la información.

Ámbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante